

www.centecinc.com

SC Telephone:864.527.7750 Outside SC: 800.227.0855

Michelin North America

Industrial Maintenance Technical Interview Outline

Industrial Maintenance Technical Interview Outline

The Technical Interview consists of the following components:

- Aptitude Battery (no calculators allowed)
- Electrical, Mechanical or Multi Skill Test (calculators allowed)
- Recommendation for a Personnel Interview (*application required*)

The 1st step in the process is the Aptitude battery (see outline). The aptitude testing session is conducted in a mass screening atmosphere, normally in a lecture, class or conference room. A presentation precedes the testing to inform applicants of our client's company, benefits, career opportunities, and to answer your questions. A one and one-half $(1 \frac{1}{2})$ -hour block of time is required to conduct a session and feedback is given to each individual. <u>Successful completion of this step is required in order to proceed to the next step.</u>

Depending upon the type of job opening that the candidate is applying for, the 2nd step will consist of either a Mechanical, Electrical or Multi Skill Test. Either test has a two (2) hour maximum time limit. The results will be reviewed with the candidate upon completion. <u>Successful completion of this step is required in order to proceed to the next step.</u>

Upon <u>successful</u> completion of Step #1 and Step #2, the candidate will be referred for a Personnel Interview. Usually, this interview will be scheduled with the company within 5-10 business days. Occasionally, it could be completed on the same day as the Technical Interview.

Other Notes:

- Confirm a testing session (see invitation letter/email)
- Bring a calculator
- Bring a completed application (go to <u>www.centecinc.com/application.pdf</u> to download an application from our web site)
- Go to our resources page <u>www.centecinc.com</u> to obtain study information for the skills assessments from our web site

Outline of the Aptitude Test Battery

*** CALCULATORS NOT ALLOWED ***

Test #1: Applied Math Skills (20 minutes long)

- Ability to apply math skills to practical applications of everyday life
- Ability to add, subtract, multiply and divide
- Ability to function with whole numbers, decimals and fractions

Examples:

(A) What is the total weight of four kegs of nails if each keg weighs 100 pounds?

(B) There are 8 gallons of water in a tank which can hold 16.5 gallons. How many gallons can be added to this tank?

(C) How many feet are there in 100 inches?

Test #2: Mechanical Comprehension (30 minutes long)

• Ability to analyze pictures and determine elements and principles of mechanical concepts.

Look at Sample X and Y on this page. It shows two men carrying a weighted object on a plank, and it asks, "Which man carries more weight?" Because the object is closer to man B than to man A, man B is shouldering more weight.

X Which man carries more weight? (If equal, mark C.)

Y

Which letter shows the seat where a passenger will get the smoothest ride?

Michelin North America, Greenville SC *Electrical New Hire Assessment* Assessment Topic Percentages

ADMINISTRATION
AUTOMATION TECHNOLOGY
ELECTRICAL CONTROL TECHNOLOGY
ELECTRONICS TECHNOLOGY
MECHANICAL TECHNOLOGY
PROCESS CONTROL TECHNOLOGY

Number of Questions: 100 Number of Task Statements Assessed: 44

Major Topic	<u># of Questions</u>	<u>Percentage</u>
ADMINISTRATION	5	5%
AUTOMATION TECHNOLOGY	8	8%
ELECTRICAL CONTROL TECHNOLOGY	50	50%
ELECTRONICS TECHNOLOGY	20	20%
MECHANICAL TECHNOLOGY	10	10%
PROCESS CONTROL TECHNOLOGY	7	7%

Knowledge and Skill Assessment Task Statements

5% ADMINISTRATION

100% OFFICE COMPUTERS

- 2 Knowledge of basic PC hardware and functions
- 3 Knowledge of Microsoft Office software

8% AUTOMATION TECHNOLOGY

100% INTRODUCTION TO PLC

- 1 Knowledge of PLC concepts (ladder diagrams, flow diagrams, etc...)
- 3 Knowledge of PLC concepts (number systems, memory, addressing, processor scan, etc...)
- 4 Knowledge of PLC hardware fundamentals (Discrete Input and Output modules)

50% ELECTRICAL CONTROL TECHNOLOGY

14% AC MOTORS

1

- 1 Able to change direction of rotation of a three phase motor
 - Able to troubleshoot motors (opens, grounds, and shorts)
- 1 Knowledge of AC motor operation (squirrel cage, wound rotor, etc...)
- 2 Knowledge of nameplate data
- 2 Knowledge of wiring configurations

16% AC THEORY

- 2 Able to calculate AC voltages and currents (effective, average, and peak)
- 1 Able to calculate Inductive/Capacitive Reactance and Impedance
- 1 Knowledge of AC voltage and current (effective, average, and peak)
- 1 Knowledge of Inductive/Capacitive Reactance and Impedance
- 3 Knowledge of phase relationships between voltage, current and power (Inductive, Capacitive, and Resistive circuits)

6% ACTUATORS AND SENSORS

3 Knowledge of operation of proximity sensors

6% BREAKERS AND FUSES

3 Knowledge of fuse and breaker types and ratings

12% DC THEORY

6 Able to apply Ohm's law to solve problems in series and parallel resistor circuits

10% POWER AND CONTROL DEVICES

- 1 Able to determine faulty relays or contactors
- 2 Knowledge of control relay operation
- 1 Knowledge of solenoid operation
- 1 Knowledge of timer operations

10% THREE PHASE THEORY

- 4 Able to calculate line and phase voltages and currents
- 1 Knowledge of 3 phase AC
- 6% TRANSFORMERS
 - 1 Knowledge of nameplate data and ratings
 - 2 Knowledge of single phase transformer theory

20% TROUBLESHOOT POWER AND CONTROL CIRCUITS

- 3 Able to troubleshoot relay control circuits
- 3 Able to troubleshoot single and three phase power circuits
- 4 Knowledge of analyzing machine sequence from a schematic diagram

20% ELECTRONICS TECHNOLOGY

15% AC DRIVE CONTROLLERS

3 Knowledge of the Volts/Hz curve.

20% COMPONENTS

- 3 Able to identify standard symbols for electronic devices
- 1 Knowledge of test procedures for SCRs, diodes, resistors, capacitors, transistors, etc

15% DC DRIVE CONTROLLERS

3 Knowledge of the DC Drive Interface circuits.

20% DC MOTORS

- 3 Knowledge of basic DC motor theory
- 1 Knowledge of DC motor types, wiring configurations and applications

20% *MOTION CONTROL SYSTEMS*

4 Knowledge of Tachometer, Incremental Encoder, Absolute Encoder and Resolver feedback devices.

10% POWER SUPPLIES

2 Knowledge of half wave and full wave bridge rectifiers

<u>10%</u> MECHANICAL TECHNOLOGY

40% DRIVE SYSTEMS

- 4 Able to determine direction of rotation in a drive system
- 10% FASTENERS
 - 1 Knowledge of standard and metric fasteners
- 30% LEVERS
 - 3 Knowledge of force, distance and fulcrum

20% SHOP PROJECTS

2 Able to apply math to shop projects

7% PROCESS CONTROL TECHNOLOGY

86% ELECTRONIC CONTROLS

- 2 Knowledge of transducers and transmitters
- 4 Knowledge of tuning component terminology and applications (P, I, D)

14% ELECTRONIC FEEDBACK DEVICES

1 Knowledge of different types of thermocouples

Electrical Written Test Examples

In the figure below, what is the total current of the circuit?

To prevent a voltmeter from loading the circuit being measured, the

- A. meter impedance should be low
- B. ohms per volt should be high
- C. sensitivity should be low
- D. circuit impedance should be high

Identify (if any) the logic traps that appear in the PLC ladder logic below.

- A. always on
- B. no trap, rung okay
- C. no way to turn rung off once true
- D. always off

The total resistance of the above circuit is _____ ohms.

A. 50B. 100C. 150D. 200

Michelin North America, Greenville SC Mechanical Prehire Assessment

Assessment Topic Percentages

Number of Questions: 100
Number of Task Statements Assessed: 32

Major Topic	<u># of Questions</u>	<u>Percentage</u>
ADMINISTRATION	4	4%
HYDRAULIC SYSTEMS	3	3%
MECHANICAL TECHNOLOGY	89	89%
PNEUMATIC SYSTEMS	4	4%

Knowledge and Skill Assessment Task Statements

<u>4%</u> ADMINISTRATION

100% OFFICE COMPUTERS

4 Knowledge of Microsoft Office software

<u>3%</u> HYDRAULIC SYSTEMS

100% FLUID THEORY

- 1 Knowledge of the relationship between pressure, force, and area
- 2 Knowledge of the relationship between pressure, volume, and temperature

<u>89%</u> MECHANICAL TECHNOLOGY

25% *BEARINGS*

- 4 Able to clean, store, handle and lubricate bearings
- 1 Able to install and remove various types of bearings
- 2 Able to recognize bearing types
- 1 Knowledge of bearing failures
- 7 Knowledge of bearing installation techniques
- 7 Knowledge of plain and anti-friction bearings

17% DRIVE SYSTEMS

- 5 Able to determine direction of rotation in a drive system
- 1 Able to recognize gear types
- 1 Able to use chain breakers
- 3 Knowledge of coupling types
- 1 Knowledge of gear types
- 1 Knowledge of the type of belt drives
- 3 Knowledge of types of chain drives

8% FASTENERS

- 3 Knowledge of proper torquing procedures
- 4 Knowledge of standard and metric fasteners

2% FITS AND TOLERANCES

- 1 Knowledge of dimensional alignments and tolerances
- 1 Knowledge of types of fits
- 2% LEVERS
 - 2 Knowledge of force, distance and fulcrum
- 4% LUBRICATION
 - 4 Knowledge of the properties of lubricants

10% MEASUREMENT

- 1 Able to accurately lay out parts for fabrication
- 1 Able to measure accurately to 0.001 inch or 0.02 millimeters
- 7 Able to use calipers, micrometers, height gauges, feeler gauges, dial indicators, and squares

20% PRINT READING

- 9 Able to determine the function of an assembly from a drawing
- 1 Able to identify common components and their symbols
- 7 Able to use drawings to assemble/disassemble equipment
- 1 Knowledge of sectional views

8% SHOP PROJECTS

- 7 Able to apply math to shop projects
- **3%** TORQUE AND SPEED
 - 3 Knowledge of common units of torque

4% PNEUMATIC SYSTEMS

100% FLUID THEORY

4 Knowledge of pressure, force and area

Mechanical Written Test Examples

Which tool would you use to put threads inside a hole?

- A. file card
- B. snips
- C. pin punch
- D. tap

Which of the following pulleys turn the same direction as #1?

A correct torquing pattern for the figure below would be

- B. 164235
- C. 341625
- D. 634125

Michelin North America, Greenville SC *Multi Skill Assessment* Assessment Topic Percentages

ADMINISTRATION

AUTOMATION TECHNOLOGY

ELECTRICAL CONTROL TECHNOLOGY

ELECTRONICS TECHNOLOGY

MECHANICAL TECHNOLOGY

PNEUMATIC SYSTEMS

Number of Questions: 150 Number of Task Statements Assessed: 57

Major Topic	<u># of Questions</u>	<u>Percentage</u>
ADMINISTRATION	4	3%
AUTOMATION TECHNOLOGY	7	5%
ELECTRICAL CONTROL TECHNOLOGY	55	37%
ELECTRONICS TECHNOLOGY	11	7%
MECHANICAL TECHNOLOGY	69	46%
PNEUMATIC SYSTEMS	4	3%

Knowledge and Skill Assessment Task Statements

<u>3%</u> ADMINISTRATION

100% OFFICE COMPUTERS

4 Knowledge of Microsoft Office software

5% AUTOMATION TECHNOLOGY

100% INTRODUCTION TO PLC

- 2 Knowledge of PLC concepts (number systems, memory, addressing, processor scan, etc...)
- 4 Knowledge of PLC hardware fundamentals (Discrete Input and Output modules)
- 1 Knowledge of PLC programming fundamentals (relay logic conversion, software, basic instructions, et ...)

<u>37%</u> ELECTRICAL CONTROL TECHNOLOGY

11% AC MOTORS

- 1 Able to change direction of rotation of a three phase motor
- 1 Able to troubleshoot motors (opens, grounds, and shorts)
- 2 Knowledge of nameplate data
- 2 Knowledge of wiring configurations

2% AC THEORY

1 Able to calculate AC voltages and currents (effective, average, and peak)

15% ACTUATORS AND SENSORS

- 3 Knowledge of common detectors
- 1 Knowledge of different operator heads and contact configurations
- 4 Knowledge of operation of proximity sensors

5% BREAKERS AND FUSES

3 Knowledge of fuse and breaker types and ratings

15% DC THEORY

8 Able to apply Ohm's law to solve problems in series and parallel resistor circuits

16% POWER AND CONTROL DEVICES

- 1 Able to determine faulty relays or contactors
- 1 Knowledge of contactor applications
- 3 Knowledge of control relay operation
- 1 Knowledge of electrical and mechanical interlocks
- 2 Knowledge of solenoid operation
- 1 Knowledge of timer operations

2% THREE PHASE THEORY

Knowledge of 3 phase AC

5% TRANSFORMERS

1

- 1 Knowledge of nameplate data and ratings
- 2 Knowledge of single phase transformer theory

29% TROUBLESHOOT POWER AND CONTROL CIRCUITS

- 1 Able to recognize electrical symbols and components
- 6 Able to troubleshoot relay control circuits
- 4 Able to troubleshoot single and three phase power circuits
- 1 Able to use test equipment
- 4 Knowledge of analyzing machine sequence from a schematic diagram

<u>7%</u> ELECTRONICS TECHNOLOGY

18% AC DRIVE CONTROLLERS

2 Knowledge of the Volts/Hz curve.

36% *DC MOTORS*

- 2 Knowledge of basic DC motor theory
- 2 Knowledge of DC motor types, wiring configurations and applications

45% MOTION CONTROL SYSTEMS

5 Knowledge of Tachometer, Incremental Encoder, Absolute Encoder and Resolver feedback devices.

<u>46%</u> MECHANICAL TECHNOLOGY

28% *BEARINGS*

- 4 Able to clean, store, handle and lubricate bearings
- 6 Knowledge of bearing installation techniques
- 9 Knowledge of plain and anti-friction bearings

25% DRIVE SYSTEMS

- 5 Able to determine direction of rotation in a drive system
- 1 Able to recognize gear types
- 1 Able to use chain breakers
- 2 Knowledge of coupling types
- 1 Knowledge of gear types
- 4 Knowledge of the type of belt drives
- 3 Knowledge of types of chain drives

9% FASTENERS

- 3 Knowledge of proper torquing procedures
- 3 Knowledge of standard and metric fasteners

7% FITS AND TOLERANCES

- 2 Knowledge of cumulative tolerances
- 2 Knowledge of the effects of temperature on tolerances
- 1 Knowledge of types of fits
- 3% LEVERS
 - 2 Knowledge of force, distance and fulcrum

6% LUBRICATION

4 Knowledge of the properties of lubricants

12% MEASUREMENT

- 1 Able to accurately lay out parts for fabrication
- 2 Able to measure accurately to 0.001 inch or 0.02 millimeters
- 5 Able to use calipers, micrometers, height gauges, feeler gauges, dial indicators, and squares

3% PRINT READING

- 1 Able to identify common components and their symbols
- 1 Knowledge of sectional views

6% SHOP PROJECTS

4 Able to apply math to shop projects

3% TORQUE AND SPEED

2 Knowledge of common units of torque

<u>3%</u> PNEUMATIC SYSTEMS

100% FLUID THEORY

4 Knowledge of pressure, force and area

Multi Skill Written Test Examples

In the figure below, what is the total current of the circuit?

To prevent a voltmeter from loading the circuit being measured, the

- E. meter impedance should be low
- F. ohms per volt should be high
- G. sensitivity should be low
- H. circuit impedance should be high

Which tool would you use to put threads inside a hole?

- E. file card
- F. snips
- G. pin punch
- H. tap

A correct torquing pattern for the figure below would be

E. 123456
F. 164235
G. 341625
H. 634125